Metamath Proof Explorer


Theorem grpmndd

Description: A group is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis grpmndd.1 φGGrp
Assertion grpmndd φGMnd

Proof

Step Hyp Ref Expression
1 grpmndd.1 φGGrp
2 grpmnd GGrpGMnd
3 1 2 syl φGMnd