Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpmndd
Next ⟩
grpcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpmndd
Description:
A group is a monoid.
(Contributed by
SN
, 1-Jun-2024)
Ref
Expression
Hypothesis
grpmndd.1
⊢
φ
→
G
∈
Grp
Assertion
grpmndd
⊢
φ
→
G
∈
Mnd
Proof
Step
Hyp
Ref
Expression
1
grpmndd.1
⊢
φ
→
G
∈
Grp
2
grpmnd
⊢
G
∈
Grp
→
G
∈
Mnd
3
1
2
syl
⊢
φ
→
G
∈
Mnd