Metamath Proof Explorer


Theorem grporid

Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 X=ranG
grpoidval.2 U=GIdG
Assertion grporid GGrpOpAXAGU=A

Proof

Step Hyp Ref Expression
1 grpoidval.1 X=ranG
2 grpoidval.2 U=GIdG
3 1 2 grpoidinv2 GGrpOpAXUGA=AAGU=AxXxGA=UAGx=U
4 simplr UGA=AAGU=AxXxGA=UAGx=UAGU=A
5 3 4 syl GGrpOpAXAGU=A