Metamath Proof Explorer


Theorem grpplusg

Description: The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 27-Oct-2024)

Ref Expression
Hypothesis grpfn.g G=BasendxB+ndx+˙
Assertion grpplusg +˙V+˙=+G

Proof

Step Hyp Ref Expression
1 grpfn.g G=BasendxB+ndx+˙
2 basendxltplusgndx Basendx<+ndx
3 plusgndxnn +ndx
4 plusgid +𝑔=Slot+ndx
5 1 2 3 4 2strop1 +˙V+˙=+G