Metamath Proof Explorer


Theorem grpsubcl

Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubcl.b B=BaseG
grpsubcl.m -˙=-G
Assertion grpsubcl GGrpXBYBX-˙YB

Proof

Step Hyp Ref Expression
1 grpsubcl.b B=BaseG
2 grpsubcl.m -˙=-G
3 1 2 grpsubf GGrp-˙:B×BB
4 fovcdm -˙:B×BBXBYBX-˙YB
5 3 4 syl3an1 GGrpXBYBX-˙YB