Metamath Proof Explorer


Theorem gsumf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B = Base G
gsumcl.z 0 ˙ = 0 G
gsumcl.g φ G CMnd
gsumcl.a φ A V
gsumcl.f φ F : A B
gsumcl.w φ finSupp 0 ˙ F
gsumf1o.h φ H : C 1-1 onto A
Assertion gsumf1o φ G F = G F H

Proof

Step Hyp Ref Expression
1 gsumcl.b B = Base G
2 gsumcl.z 0 ˙ = 0 G
3 gsumcl.g φ G CMnd
4 gsumcl.a φ A V
5 gsumcl.f φ F : A B
6 gsumcl.w φ finSupp 0 ˙ F
7 gsumf1o.h φ H : C 1-1 onto A
8 eqid Cntz G = Cntz G
9 cmnmnd G CMnd G Mnd
10 3 9 syl φ G Mnd
11 1 8 3 5 cntzcmnf φ ran F Cntz G ran F
12 1 2 8 10 4 5 11 6 7 gsumzf1o φ G F = G F H