Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsummulg  
				
		 
		
			
		 
		Description:   Nonnegative multiple of a group sum.  (Contributed by Mario Carneiro , 15-Dec-2014)   (Revised by Mario Carneiro , 7-Jan-2015)   (Revised by AV , 6-Jun-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsummulg.b   ⊢   B  =  Base  G      
					 
					
						gsummulg.z   ⊢   0  ˙ =  0  G      
					 
					
						gsummulg.t   ⊢   ·  ˙ =  ⋅  G      
					 
					
						gsummulg.a    ⊢   φ   →   A  ∈  V         
					 
					
						gsummulg.f    ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
					 
					
						gsummulg.w    ⊢   φ   →  finSupp  0  ˙ ⁡    k  ∈  A  ⟼  X         
					 
					
						gsummulg.g    ⊢   φ   →   G  ∈  CMnd         
					 
					
						gsummulg.n    ⊢   φ   →   N  ∈    ℕ   0           
					 
				
					Assertion 
					gsummulg    ⊢   φ   →   ∑  G  k  ∈  A   N  ·  ˙ X =  N  ·  ˙ ∑  G  k  ∈  A   X        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsummulg.b  ⊢   B  =  Base  G      
						
							2 
								
							 
							gsummulg.z  ⊢   0  ˙ =  0  G      
						
							3 
								
							 
							gsummulg.t  ⊢   ·  ˙ =  ⋅  G      
						
							4 
								
							 
							gsummulg.a   ⊢   φ   →   A  ∈  V         
						
							5 
								
							 
							gsummulg.f   ⊢    φ   ∧   k  ∈  A     →   X  ∈  B         
						
							6 
								
							 
							gsummulg.w   ⊢   φ   →  finSupp  0  ˙ ⁡    k  ∈  A  ⟼  X         
						
							7 
								
							 
							gsummulg.g   ⊢   φ   →   G  ∈  CMnd         
						
							8 
								
							 
							gsummulg.n   ⊢   φ   →   N  ∈    ℕ   0           
						
							9 
								8 
							 
							nn0zd   ⊢   φ   →   N  ∈   ℤ          
						
							10 
								8 
							 
							olcd   ⊢   φ   →    G  ∈  Abel    ∨   N  ∈    ℕ   0            
						
							11 
								1  2  3  4  5  6  7  9  10 
							 
							gsummulglem   ⊢   φ   →   ∑  G  k  ∈  A   N  ·  ˙ X =  N  ·  ˙ ∑  G  k  ∈  A   X