Metamath Proof Explorer


Theorem gt-lth

Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses gt-lth.1 AV
gt-lth.2 BV
Assertion gt-lth A>BB<A

Proof

Step Hyp Ref Expression
1 gt-lth.1 AV
2 gt-lth.2 BV
3 df-gt >=<-1
4 3 breqi A>BA<-1B
5 1 2 brcnv A<-1BB<A
6 4 5 bitri A>BB<A