Metamath Proof Explorer


Theorem hash0

Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014)

Ref Expression
Assertion hash0 =0

Proof

Step Hyp Ref Expression
1 eqid =
2 0ex V
3 hasheq0 V=0=
4 2 3 ax-mp =0=
5 1 4 mpbir =0