Metamath Proof Explorer


Theorem hcauseq

Description: A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hcauseq F Cauchy F :

Proof

Step Hyp Ref Expression
1 hcau F Cauchy F : x + y z y norm F y - F z < x
2 1 simplbi F Cauchy F :