Metamath Proof Explorer


Theorem heeq12

Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020)

Ref Expression
Assertion heeq12 R=SA=BRhereditaryAShereditaryB

Proof

Step Hyp Ref Expression
1 simpl R=SA=BR=S
2 simpr R=SA=BA=B
3 1 2 imaeq12d R=SA=BRA=SB
4 3 2 sseq12d R=SA=BRAASBB
5 df-he RhereditaryARAA
6 df-he ShereditaryBSBB
7 4 5 6 3bitr4g R=SA=BRhereditaryAShereditaryB