Metamath Proof Explorer


Theorem heeq1

Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020)

Ref Expression
Assertion heeq1 R=SRhereditaryAShereditaryA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 heeq12 R=SA=ARhereditaryAShereditaryA
3 1 2 mpan2 R=SRhereditaryAShereditaryA