Metamath Proof Explorer


Theorem hlrelat1

Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.) (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses hlrelat1.b B=BaseK
hlrelat1.l ˙=K
hlrelat1.s <˙=<K
hlrelat1.a A=AtomsK
Assertion hlrelat1 KHLXBYBX<˙YpA¬p˙Xp˙Y

Proof

Step Hyp Ref Expression
1 hlrelat1.b B=BaseK
2 hlrelat1.l ˙=K
3 hlrelat1.s <˙=<K
4 hlrelat1.a A=AtomsK
5 hlomcmat KHLKOMLKCLatKAtLat
6 1 2 3 4 atlrelat1 KOMLKCLatKAtLatXBYBX<˙YpA¬p˙Xp˙Y
7 5 6 syl3an1 KHLXBYBX<˙YpA¬p˙Xp˙Y