Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Norm Megill Hilbert lattices hlrelat1  
				
		 
		
			
		 
		Description:   An atomistic lattice with 0 is relatively atomic.  Part of Lemma 7.2 of
       MaedaMaeda  p. 30.  ( chpssati  , with /\  swapped, analog.)
       (Contributed by NM , 4-Dec-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						hlrelat1.b   ⊢   B  =  Base  K      
					 
					
						hlrelat1.l   ⊢   ≤  ˙ =  ≤  K      
					 
					
						hlrelat1.s   ⊢   <  ˙ =  <  K      
					 
					
						hlrelat1.a   ⊢   A  =   Atoms  ⁡  K        
					 
				
					Assertion 
					hlrelat1    ⊢    K  ∈  HL    ∧   X  ∈  B    ∧   Y  ∈  B     →   X  <  ˙ Y →   ∃  p  ∈  A    ¬  p  ≤  ˙ X   ∧  p  ≤  ˙ Y          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							hlrelat1.b  ⊢   B  =  Base  K      
						
							2 
								
							 
							hlrelat1.l  ⊢   ≤  ˙ =  ≤  K      
						
							3 
								
							 
							hlrelat1.s  ⊢   <  ˙ =  <  K      
						
							4 
								
							 
							hlrelat1.a  ⊢   A  =   Atoms  ⁡  K        
						
							5 
								
							 
							hlomcmat   ⊢   K  ∈  HL    →    K  ∈  OML    ∧   K  ∈  CLat    ∧   K  ∈  AtLat          
						
							6 
								1  2  3  4 
							 
							atlrelat1   ⊢     K  ∈  OML    ∧   K  ∈  CLat    ∧   K  ∈  AtLat     ∧   X  ∈  B    ∧   Y  ∈  B     →   X  <  ˙ Y →   ∃  p  ∈  A    ¬  p  ≤  ˙ X   ∧  p  ≤  ˙ Y          
						
							7 
								5  6 
							 
							syl3an1   ⊢    K  ∈  HL    ∧   X  ∈  B    ∧   Y  ∈  B     →   X  <  ˙ Y →   ∃  p  ∈  A    ¬  p  ≤  ˙ X   ∧  p  ≤  ˙ Y