Metamath Proof Explorer


Theorem ho0sub

Description: Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion ho0sub S:T:S-opT=S+op0hop-opT

Proof

Step Hyp Ref Expression
1 oveq1 S=ifS:S0hopS-opT=ifS:S0hop-opT
2 oveq1 S=ifS:S0hopS+op0hop-opT=ifS:S0hop+op0hop-opT
3 1 2 eqeq12d S=ifS:S0hopS-opT=S+op0hop-opTifS:S0hop-opT=ifS:S0hop+op0hop-opT
4 oveq2 T=ifT:T0hopifS:S0hop-opT=ifS:S0hop-opifT:T0hop
5 oveq2 T=ifT:T0hop0hop-opT=0hop-opifT:T0hop
6 5 oveq2d T=ifT:T0hopifS:S0hop+op0hop-opT=ifS:S0hop+op0hop-opifT:T0hop
7 4 6 eqeq12d T=ifT:T0hopifS:S0hop-opT=ifS:S0hop+op0hop-opTifS:S0hop-opifT:T0hop=ifS:S0hop+op0hop-opifT:T0hop
8 ho0f 0hop:
9 8 elimf ifS:S0hop:
10 8 elimf ifT:T0hop:
11 9 10 ho0subi ifS:S0hop-opifT:T0hop=ifS:S0hop+op0hop-opifT:T0hop
12 3 7 11 dedth2h S:T:S-opT=S+op0hop-opT