Metamath Proof Explorer


Theorem hosubid1

Description: The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubid1 T:T-op0hop=T

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 ho0sub T:0hop:T-op0hop=T+op0hop-op0hop
3 1 2 mpan2 T:T-op0hop=T+op0hop-op0hop
4 1 hodidi 0hop-op0hop=0hop
5 4 oveq2i T+op0hop-op0hop=T+op0hop
6 hoaddrid T:T+op0hop=T
7 5 6 eqtrid T:T+op0hop-op0hop=T
8 3 7 eqtrd T:T-op0hop=T