Metamath Proof Explorer


Theorem hosubid1

Description: The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubid1 T : T - op 0 hop = T

Proof

Step Hyp Ref Expression
1 ho0f 0 hop :
2 ho0sub T : 0 hop : T - op 0 hop = T + op 0 hop - op 0 hop
3 1 2 mpan2 T : T - op 0 hop = T + op 0 hop - op 0 hop
4 1 hodidi 0 hop - op 0 hop = 0 hop
5 4 oveq2i T + op 0 hop - op 0 hop = T + op 0 hop
6 hoaddid1 T : T + op 0 hop = T
7 5 6 eqtrid T : T + op 0 hop - op 0 hop = T
8 3 7 eqtrd T : T - op 0 hop = T