Description: The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hosubid1 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 −op 0hop ) = 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
2 | ho0sub | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ) → ( 𝑇 −op 0hop ) = ( 𝑇 +op ( 0hop −op 0hop ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 −op 0hop ) = ( 𝑇 +op ( 0hop −op 0hop ) ) ) |
4 | 1 | hodidi | ⊢ ( 0hop −op 0hop ) = 0hop |
5 | 4 | oveq2i | ⊢ ( 𝑇 +op ( 0hop −op 0hop ) ) = ( 𝑇 +op 0hop ) |
6 | hoaddid1 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op 0hop ) = 𝑇 ) | |
7 | 5 6 | eqtrid | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op ( 0hop −op 0hop ) ) = 𝑇 ) |
8 | 3 7 | eqtrd | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 −op 0hop ) = 𝑇 ) |