Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
|- 0hop : ~H --> ~H |
2 |
|
ho0sub |
|- ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H ) -> ( T -op 0hop ) = ( T +op ( 0hop -op 0hop ) ) ) |
3 |
1 2
|
mpan2 |
|- ( T : ~H --> ~H -> ( T -op 0hop ) = ( T +op ( 0hop -op 0hop ) ) ) |
4 |
1
|
hodidi |
|- ( 0hop -op 0hop ) = 0hop |
5 |
4
|
oveq2i |
|- ( T +op ( 0hop -op 0hop ) ) = ( T +op 0hop ) |
6 |
|
hoaddid1 |
|- ( T : ~H --> ~H -> ( T +op 0hop ) = T ) |
7 |
5 6
|
eqtrid |
|- ( T : ~H --> ~H -> ( T +op ( 0hop -op 0hop ) ) = T ) |
8 |
3 7
|
eqtrd |
|- ( T : ~H --> ~H -> ( T -op 0hop ) = T ) |