Metamath Proof Explorer


Theorem ho0subi

Description: Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hodseq.2 S:
hodseq.3 T:
Assertion ho0subi S-opT=S+op0hop-opT

Proof

Step Hyp Ref Expression
1 hodseq.2 S:
2 hodseq.3 T:
3 ho0f 0hop:
4 3 2 hosubcli 0hop-opT:
5 2 1 4 hoadd12i T+opS+op0hop-opT=S+opT+op0hop-opT
6 2 3 hodseqi T+op0hop-opT=0hop
7 6 oveq2i S+opT+op0hop-opT=S+op0hop
8 1 hoaddridi S+op0hop=S
9 5 7 8 3eqtri T+opS+op0hop-opT=S
10 1 4 hoaddcli S+op0hop-opT:
11 1 2 10 hodsi S-opT=S+op0hop-opTT+opS+op0hop-opT=S
12 9 11 mpbir S-opT=S+op0hop-opT