Metamath Proof Explorer


Theorem hoaddsubi

Description: Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1 R:
hoaddsubass.2 S:
hoaddsubass.3 T:
Assertion hoaddsubi R+opS-opT=R-opT+opS

Proof

Step Hyp Ref Expression
1 hoaddsubass.1 R:
2 hoaddsubass.2 S:
3 hoaddsubass.3 T:
4 1 2 hoaddcomi R+opS=S+opR
5 4 oveq1i R+opS-opT=S+opR-opT
6 2 1 3 hoaddsubassi S+opR-opT=S+opR-opT
7 1 3 hosubcli R-opT:
8 2 7 hoaddcomi S+opR-opT=R-opT+opS
9 5 6 8 3eqtri R+opS-opT=R-opT+opS