Metamath Proof Explorer


Theorem hoaddcomi

Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1 S:
hoeq.2 T:
Assertion hoaddcomi S+opT=T+opS

Proof

Step Hyp Ref Expression
1 hoeq.1 S:
2 hoeq.2 T:
3 1 ffvelcdmi xSx
4 2 ffvelcdmi xTx
5 ax-hvcom SxTxSx+Tx=Tx+Sx
6 3 4 5 syl2anc xSx+Tx=Tx+Sx
7 hosval S:T:xS+opTx=Sx+Tx
8 1 2 7 mp3an12 xS+opTx=Sx+Tx
9 hosval T:S:xT+opSx=Tx+Sx
10 2 1 9 mp3an12 xT+opSx=Tx+Sx
11 6 8 10 3eqtr4d xS+opTx=T+opSx
12 11 rgen xS+opTx=T+opSx
13 1 2 hoaddcli S+opT:
14 2 1 hoaddcli T+opS:
15 13 14 hoeqi xS+opTx=T+opSxS+opT=T+opS
16 12 15 mpbi S+opT=T+opS