| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoeq.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 2 |
|
hoeq.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 3 |
1
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 4 |
2
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 5 |
|
ax-hvcom |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 7 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 8 |
1 2 7
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 9 |
|
hosval |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 10 |
2 1 9
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 11 |
6 8 10
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) ) |
| 12 |
11
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) |
| 13 |
1 2
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 14 |
2 1
|
hoaddcli |
⊢ ( 𝑇 +op 𝑆 ) : ℋ ⟶ ℋ |
| 15 |
13 14
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) ↔ ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
| 16 |
12 15
|
mpbi |
⊢ ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) |