Metamath Proof Explorer


Theorem hosubcl

Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubcl S:T:S-opT:

Proof

Step Hyp Ref Expression
1 oveq1 S=ifS:S0hopS-opT=ifS:S0hop-opT
2 1 feq1d S=ifS:S0hopS-opT:ifS:S0hop-opT:
3 oveq2 T=ifT:T0hopifS:S0hop-opT=ifS:S0hop-opifT:T0hop
4 3 feq1d T=ifT:T0hopifS:S0hop-opT:ifS:S0hop-opifT:T0hop:
5 ho0f 0hop:
6 5 elimf ifS:S0hop:
7 5 elimf ifT:T0hop:
8 6 7 hosubcli ifS:S0hop-opifT:T0hop:
9 2 4 8 dedth2h S:T:S-opT: