Metamath Proof Explorer


Theorem hocsubdiri

Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R:
hods.2 S:
hods.3 T:
Assertion hocsubdiri R-opST=RT-opST

Proof

Step Hyp Ref Expression
1 hods.1 R:
2 hods.2 S:
3 hods.3 T:
4 1 2 hosubcli R-opS:
5 4 3 hocoi xR-opSTx=R-opSTx
6 1 3 hocofi RT:
7 2 3 hocofi ST:
8 hodval RT:ST:xRT-opSTx=RTx-STx
9 6 7 8 mp3an12 xRT-opSTx=RTx-STx
10 3 ffvelcdmi xTx
11 hodval R:S:TxR-opSTx=RTx-STx
12 1 2 11 mp3an12 TxR-opSTx=RTx-STx
13 10 12 syl xR-opSTx=RTx-STx
14 1 3 hocoi xRTx=RTx
15 2 3 hocoi xSTx=STx
16 14 15 oveq12d xRTx-STx=RTx-STx
17 13 16 eqtr4d xR-opSTx=RTx-STx
18 9 17 eqtr4d xRT-opSTx=R-opSTx
19 5 18 eqtr4d xR-opSTx=RT-opSTx
20 19 rgen xR-opSTx=RT-opSTx
21 4 3 hocofi R-opST:
22 6 7 hosubcli RT-opST:
23 21 22 hoeqi xR-opSTx=RT-opSTxR-opST=RT-opST
24 20 23 mpbi R-opST=RT-opST