Metamath Proof Explorer


Theorem hodidi

Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddrid.1 T:
Assertion hodidi T-opT=0hop

Proof

Step Hyp Ref Expression
1 hoaddrid.1 T:
2 1 hoaddridi T+op0hop=T
3 ho0f 0hop:
4 1 1 3 hodsi T-opT=0hopT+op0hop=T
5 2 4 mpbir T-opT=0hop