Metamath Proof Explorer


Theorem hoico1

Description: Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoico1 T : T I op = T

Proof

Step Hyp Ref Expression
1 dfiop2 I op = I
2 1 coeq2i T I op = T I
3 fcoi1 T : T I = T
4 2 3 eqtrid T : T I op = T