Metamath Proof Explorer


Theorem homfeqd

Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqd.1 φBaseC=BaseD
homfeqd.2 φHomC=HomD
Assertion homfeqd φHom𝑓C=Hom𝑓D

Proof

Step Hyp Ref Expression
1 homfeqd.1 φBaseC=BaseD
2 homfeqd.2 φHomC=HomD
3 2 oveqd φxHomCy=xHomDy
4 3 ralrimivw φyBaseCxHomCy=xHomDy
5 4 ralrimivw φxBaseCyBaseCxHomCy=xHomDy
6 eqid HomC=HomC
7 eqid HomD=HomD
8 eqidd φBaseC=BaseC
9 6 7 8 1 homfeq φHom𝑓C=Hom𝑓DxBaseCyBaseCxHomCy=xHomDy
10 5 9 mpbird φHom𝑓C=Hom𝑓D