Metamath Proof Explorer


Theorem honegneg

Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegneg T:-1·op-1·opT=T

Proof

Step Hyp Ref Expression
1 neg1mulneg1e1 -1-1=1
2 1 oveq1i -1-1·opT=1·opT
3 neg1cn 1
4 homulass 11T:-1-1·opT=-1·op-1·opT
5 3 3 4 mp3an12 T:-1-1·opT=-1·op-1·opT
6 homullid T:1·opT=T
7 2 5 6 3eqtr3a T:-1·op-1·opT=T