Metamath Proof Explorer


Theorem hosubneg

Description: Relationship between operator subtraction and negative. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubneg T:U:T-op-1·opU=T+opU

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 homulcl 1U:-1·opU:
3 1 2 mpan U:-1·opU:
4 honegsub T:-1·opU:T+op-1·op-1·opU=T-op-1·opU
5 3 4 sylan2 T:U:T+op-1·op-1·opU=T-op-1·opU
6 honegneg U:-1·op-1·opU=U
7 6 oveq2d U:T+op-1·op-1·opU=T+opU
8 7 adantl T:U:T+op-1·op-1·opU=T+opU
9 5 8 eqtr3d T:U:T-op-1·opU=T+opU