Metamath Proof Explorer


Theorem hosubdi

Description: Scalar product distributive law for operator difference. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubdi AT:U:A·opT-opU=A·opT-opA·opU

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 homulcl 1U:-1·opU:
3 1 2 mpan U:-1·opU:
4 hoadddi AT:-1·opU:A·opT+op-1·opU=A·opT+opA·op-1·opU
5 3 4 syl3an3 AT:U:A·opT+op-1·opU=A·opT+opA·op-1·opU
6 homul12 A1U:A·op-1·opU=-1·opA·opU
7 1 6 mp3an2 AU:A·op-1·opU=-1·opA·opU
8 7 3adant2 AT:U:A·op-1·opU=-1·opA·opU
9 8 oveq2d AT:U:A·opT+opA·op-1·opU=A·opT+op-1·opA·opU
10 5 9 eqtrd AT:U:A·opT+op-1·opU=A·opT+op-1·opA·opU
11 honegsub T:U:T+op-1·opU=T-opU
12 11 oveq2d T:U:A·opT+op-1·opU=A·opT-opU
13 12 3adant1 AT:U:A·opT+op-1·opU=A·opT-opU
14 homulcl AT:A·opT:
15 homulcl AU:A·opU:
16 honegsub A·opT:A·opU:A·opT+op-1·opA·opU=A·opT-opA·opU
17 14 15 16 syl2an AT:AU:A·opT+op-1·opA·opU=A·opT-opA·opU
18 17 3impdi AT:U:A·opT+op-1·opA·opU=A·opT-opA·opU
19 10 13 18 3eqtr3d AT:U:A·opT-opU=A·opT-opA·opU