| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 2 |  | homulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝑈 :  ℋ ⟶  ℋ  →  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 4 |  | hoadddi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  ( - 1  ·op  𝑈 ) :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  +op  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) ) ) ) | 
						
							| 5 | 3 4 | syl3an3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  +op  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) ) ) ) | 
						
							| 6 |  | homul12 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 1  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) )  =  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 7 | 1 6 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) )  =  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) )  =  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( ( 𝐴  ·op  𝑇 )  +op  ( 𝐴  ·op  ( - 1  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  +op  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) ) ) | 
						
							| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  +op  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) ) ) | 
						
							| 11 |  | honegsub | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝑇  +op  ( - 1  ·op  𝑈 ) )  =  ( 𝑇  −op  𝑈 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( 𝐴  ·op  ( 𝑇  −op  𝑈 ) ) ) | 
						
							| 13 | 12 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  +op  ( - 1  ·op  𝑈 ) ) )  =  ( 𝐴  ·op  ( 𝑇  −op  𝑈 ) ) ) | 
						
							| 14 |  | homulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ ) | 
						
							| 15 |  | homulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑈 ) :  ℋ ⟶  ℋ ) | 
						
							| 16 |  | honegsub | ⊢ ( ( ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ  ∧  ( 𝐴  ·op  𝑈 ) :  ℋ ⟶  ℋ )  →  ( ( 𝐴  ·op  𝑇 )  +op  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  −op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 17 | 14 15 16 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  ( 𝐴  ∈  ℂ  ∧  𝑈 :  ℋ ⟶  ℋ ) )  →  ( ( 𝐴  ·op  𝑇 )  +op  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  −op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 18 | 17 | 3impdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( ( 𝐴  ·op  𝑇 )  +op  ( - 1  ·op  ( 𝐴  ·op  𝑈 ) ) )  =  ( ( 𝐴  ·op  𝑇 )  −op  ( 𝐴  ·op  𝑈 ) ) ) | 
						
							| 19 | 10 13 18 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑈 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  ( 𝑇  −op  𝑈 ) )  =  ( ( 𝐴  ·op  𝑇 )  −op  ( 𝐴  ·op  𝑈 ) ) ) |