| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 2 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇 ‘ 𝑥 )  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ∈   ℋ ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ∈   ℋ ) | 
						
							| 4 | 3 | anassrs | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  ∈   ℋ ) | 
						
							| 5 | 4 | fmpttd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 6 |  | hommval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑇 )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 6 | feq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ  ↔  ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) :  ℋ ⟶  ℋ ) ) | 
						
							| 8 | 5 7 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑇 ) :  ℋ ⟶  ℋ ) |