Metamath Proof Explorer


Theorem homul12

Description: Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion homul12 ABT:A·opB·opT=B·opA·opT

Proof

Step Hyp Ref Expression
1 mulcom ABAB=BA
2 1 oveq1d ABAB·opT=BA·opT
3 2 3adant3 ABT:AB·opT=BA·opT
4 homulass ABT:AB·opT=A·opB·opT
5 homulass BAT:BA·opT=B·opA·opT
6 5 3com12 ABT:BA·opT=B·opA·opT
7 3 4 6 3eqtr3d ABT:A·opB·opT=B·opA·opT