Metamath Proof Explorer


Theorem htalem

Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/ . This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional R We A antecedent. The element B is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses htalem.1 AV
htalem.2 B=ιxA|yA¬yRx
Assertion htalem RWeAABA

Proof

Step Hyp Ref Expression
1 htalem.1 AV
2 htalem.2 B=ιxA|yA¬yRx
3 simpl RWeAARWeA
4 1 a1i RWeAAAV
5 ssidd RWeAAAA
6 simpr RWeAAA
7 wereu RWeAAVAAA∃!xAyA¬yRx
8 3 4 5 6 7 syl13anc RWeAA∃!xAyA¬yRx
9 riotacl ∃!xAyA¬yRxιxA|yA¬yRxA
10 8 9 syl RWeAAιxA|yA¬yRxA
11 2 10 eqeltrid RWeAABA