Metamath Proof Explorer


Theorem hvaddcan2

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvaddcan2 ABCA+C=B+CA=B

Proof

Step Hyp Ref Expression
1 ax-hvcom CAC+A=A+C
2 1 3adant3 CABC+A=A+C
3 ax-hvcom CBC+B=B+C
4 3 3adant2 CABC+B=B+C
5 2 4 eqeq12d CABC+A=C+BA+C=B+C
6 hvaddcan CABC+A=C+BA=B
7 5 6 bitr3d CABA+C=B+CA=B
8 7 3coml ABCA+C=B+CA=B