Metamath Proof Explorer


Theorem iccdili

Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccdili.1 A
iccdili.2 B
iccdili.3 R+
iccdili.4 AR=C
iccdili.5 BR=D
Assertion iccdili XABXRCD

Proof

Step Hyp Ref Expression
1 iccdili.1 A
2 iccdili.2 B
3 iccdili.3 R+
4 iccdili.4 AR=C
5 iccdili.5 BR=D
6 iccssre ABAB
7 1 2 6 mp2an AB
8 7 sseli XABX
9 4 5 iccdil ABXR+XABXRCD
10 1 2 9 mpanl12 XR+XABXRCD
11 3 10 mpan2 XXABXRCD
12 11 biimpd XXABXRCD
13 8 12 mpcom XABXRCD