Metamath Proof Explorer


Theorem iccgelbd

Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iccgelbd.1 φA*
iccgelbd.2 φB*
iccgelbd.3 φCAB
Assertion iccgelbd φAC

Proof

Step Hyp Ref Expression
1 iccgelbd.1 φA*
2 iccgelbd.2 φB*
3 iccgelbd.3 φCAB
4 iccgelb A*B*CABAC
5 1 2 3 4 syl3anc φAC