Metamath Proof Explorer


Theorem ichcircshi

Description: The setvar variables are interchangeable if they can be circularily shifted using a third setvar variable, using implicit substitution. (Contributed by AV, 29-Jul-2023)

Ref Expression
Hypotheses ichcircshi.1 x=zφψ
ichcircshi.2 y=xψχ
ichcircshi.3 z=yχφ
Assertion ichcircshi xyφ

Proof

Step Hyp Ref Expression
1 ichcircshi.1 x=zφψ
2 ichcircshi.2 y=xψχ
3 ichcircshi.3 z=yχφ
4 3 bicomd z=yφχ
5 4 equcoms y=zφχ
6 5 sbievw zyφχ
7 6 2sbbii xzyxzyφxzyxχ
8 2 bicomd y=xχψ
9 8 equcoms x=yχψ
10 9 sbievw yxχψ
11 10 sbbii xzyxχxzψ
12 1 bicomd x=zψφ
13 12 equcoms z=xψφ
14 13 sbievw xzψφ
15 7 11 14 3bitri xzyxzyφφ
16 15 gen2 xyxzyxzyφφ
17 df-ich xyφxyxzyxzyφφ
18 16 17 mpbir xyφ