Metamath Proof Explorer


Theorem icossico2d

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses icossico2d.1 φ B *
icossico2d.2 φ C *
icossico2d.3 φ B A
Assertion icossico2d φ A C B C

Proof

Step Hyp Ref Expression
1 icossico2d.1 φ B *
2 icossico2d.2 φ C *
3 icossico2d.3 φ B A
4 2 xrleidd φ C C
5 icossico B * C * B A C C A C B C
6 1 2 3 4 5 syl22anc φ A C B C