Metamath Proof Explorer


Theorem ideqg

Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ideqg BVAIBA=B

Proof

Step Hyp Ref Expression
1 id BVBV
2 reli RelI
3 2 brrelex1i AIBAV
4 1 3 anim12ci BVAIBAVBV
5 eleq1 A=BAVBV
6 5 biimparc BVA=BAV
7 6 elexd BVA=BAV
8 simpl BVA=BBV
9 7 8 jca BVA=BAVBV
10 eqeq1 x=Ax=yA=y
11 eqeq2 y=BA=yA=B
12 df-id I=xy|x=y
13 10 11 12 brabg AVBVAIBA=B
14 4 9 13 pm5.21nd BVAIBA=B