Metamath Proof Explorer


Theorem idfu1

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I=idfuncC
idfuval.b B=BaseC
idfuval.c φCCat
idfu1.x φXB
Assertion idfu1 φ1stIX=X

Proof

Step Hyp Ref Expression
1 idfuval.i I=idfuncC
2 idfuval.b B=BaseC
3 idfuval.c φCCat
4 idfu1.x φXB
5 1 2 3 idfu1st φ1stI=IB
6 5 fveq1d φ1stIX=IBX
7 fvresi XBIBX=X
8 4 7 syl φIBX=X
9 6 8 eqtrd φ1stIX=X