Metamath Proof Explorer


Theorem idrval

Description: The value of the identity element. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses idrval.1 X=ranG
idrval.2 U=GIdG
Assertion idrval GAU=ιuX|xXuGx=xxGu=x

Proof

Step Hyp Ref Expression
1 idrval.1 X=ranG
2 idrval.2 U=GIdG
3 1 gidval GAGIdG=ιuX|xXuGx=xxGu=x
4 2 3 eqtrid GAU=ιuX|xXuGx=xxGu=x