Metamath Proof Explorer


Theorem ids1

Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion ids1 ⟨“A”⟩=⟨“IA”⟩

Proof

Step Hyp Ref Expression
1 fvex IAV
2 fvi IAVIIA=IA
3 1 2 ax-mp IIA=IA
4 3 opeq2i 0IIA=0IA
5 4 sneqi 0IIA=0IA
6 df-s1 ⟨“IA”⟩=0IIA
7 df-s1 ⟨“A”⟩=0IA
8 5 6 7 3eqtr4ri ⟨“A”⟩=⟨“IA”⟩