Metamath Proof Explorer


Theorem ifbieq12d

Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ifbieq12d.1 φψχ
ifbieq12d.2 φA=C
ifbieq12d.3 φB=D
Assertion ifbieq12d φifψAB=ifχCD

Proof

Step Hyp Ref Expression
1 ifbieq12d.1 φψχ
2 ifbieq12d.2 φA=C
3 ifbieq12d.3 φB=D
4 1 ifbid φifψAB=ifχAB
5 2 3 ifeq12d φifχAB=ifχCD
6 4 5 eqtrd φifψAB=ifχCD