Metamath Proof Explorer


Theorem ifeq2

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq2 A=BifφCA=ifφCB

Proof

Step Hyp Ref Expression
1 rabeq A=BxA|¬φ=xB|¬φ
2 1 uneq2d A=BxC|φxA|¬φ=xC|φxB|¬φ
3 dfif6 ifφCA=xC|φxA|¬φ
4 dfif6 ifφCB=xC|φxB|¬φ
5 2 3 4 3eqtr4g A=BifφCA=ifφCB