Metamath Proof Explorer


Theorem ifeqor

Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ifeqor ifφAB=AifφAB=B

Proof

Step Hyp Ref Expression
1 iftrue φifφAB=A
2 1 con3i ¬ifφAB=A¬φ
3 2 iffalsed ¬ifφAB=AifφAB=B
4 3 orri ifφAB=AifφAB=B