Metamath Proof Explorer


Theorem ifid

Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005)

Ref Expression
Assertion ifid ifφAA=A

Proof

Step Hyp Ref Expression
1 iftrue φifφAA=A
2 iffalse ¬φifφAA=A
3 1 2 pm2.61i ifφAA=A