Metamath Proof Explorer


Theorem ifor

Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ifor ifφψAB=ifφAifψAB

Proof

Step Hyp Ref Expression
1 iftrue φψifφψAB=A
2 1 orcs φifφψAB=A
3 iftrue φifφAifψAB=A
4 2 3 eqtr4d φifφψAB=ifφAifψAB
5 iffalse ¬φifφAifψAB=ifψAB
6 biorf ¬φψφψ
7 6 ifbid ¬φifψAB=ifφψAB
8 5 7 eqtr2d ¬φifφψAB=ifφAifψAB
9 4 8 pm2.61i ifφψAB=ifφAifψAB