Metamath Proof Explorer


Theorem ifpbi123d

Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 17-Apr-2024)

Ref Expression
Hypotheses ifpbi123d.1 φψτ
ifpbi123d.2 φχη
ifpbi123d.3 φθζ
Assertion ifpbi123d φif-ψχθif-τηζ

Proof

Step Hyp Ref Expression
1 ifpbi123d.1 φψτ
2 ifpbi123d.2 φχη
3 ifpbi123d.3 φθζ
4 1 2 imbi12d φψχτη
5 1 3 orbi12d φψθτζ
6 4 5 anbi12d φψχψθτητζ
7 dfifp3 if-ψχθψχψθ
8 dfifp3 if-τηζτητζ
9 6 7 8 3bitr4g φif-ψχθif-τηζ