Metamath Proof Explorer


Theorem ifpbi1b

Description: When the first variable is irrelevant, it can be replaced. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbi1b if-φχχif-ψχχ

Proof

Step Hyp Ref Expression
1 id χχ
2 1 olci φ¬ψχχ
3 1 olci ψφχχ
4 2 3 pm3.2i φ¬ψχχψφχχ
5 1 olci φψχχ
6 1 olci ¬ψφχχ
7 5 6 pm3.2i φψχχ¬ψφχχ
8 ifpim123g if-φχχif-ψχχφ¬ψχχψφχχφψχχ¬ψφχχ
9 4 7 8 mpbir2an if-φχχif-ψχχ
10 1 olci ψ¬φχχ
11 10 5 pm3.2i ψ¬φχχφψχχ
12 1 olci ¬φψχχ
13 3 12 pm3.2i ψφχχ¬φψχχ
14 ifpim123g if-ψχχif-φχχψ¬φχχφψχχψφχχ¬φψχχ
15 11 13 14 mpbir2an if-ψχχif-φχχ
16 9 15 impbii if-φχχif-ψχχ