Metamath Proof Explorer


Theorem ifpid2

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid2 φif-φ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬φ
3 2 biantrur φ¬φφ
4 fal ¬
5 4 biorfi φφ
6 dfifp4 if-φ¬φφ
7 3 5 6 3bitr4i φif-φ