Metamath Proof Explorer


Theorem ifpid2

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid2 ( 𝜑 ↔ if- ( 𝜑 , ⊤ , ⊥ ) )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( ¬ 𝜑 ∨ ⊤ )
3 2 biantrur ( ( 𝜑 ∨ ⊥ ) ↔ ( ( ¬ 𝜑 ∨ ⊤ ) ∧ ( 𝜑 ∨ ⊥ ) ) )
4 fal ¬ ⊥
5 4 biorfi ( 𝜑 ↔ ( 𝜑 ∨ ⊥ ) )
6 dfifp4 ( if- ( 𝜑 , ⊤ , ⊥ ) ↔ ( ( ¬ 𝜑 ∨ ⊤ ) ∧ ( 𝜑 ∨ ⊥ ) ) )
7 3 5 6 3bitr4i ( 𝜑 ↔ if- ( 𝜑 , ⊤ , ⊥ ) )